Data Visualization Playground
Drop CSV files to instantly create interactive charts and explore your data with multiple visualization types
Interactive Playground
Dataset
Visualization
Data Preview
| month | north | south | east | west |
|---|---|---|---|---|
| Jan | 4200 | 3800 | 5100 | 3400 |
| Feb | 4800 | 4200 | 5400 | 3900 |
| Mar | 5200 | 4600 | 5800 | 4200 |
| Apr | 4900 | 4300 | 5500 | 4000 |
| May | 5500 | 5000 | 6200 | 4600 |
Interactive Data Visualization Playground
A powerful data exploration tool that transforms CSV files into beautiful, interactive visualizations. Simply drag and drop your data files to instantly create charts, discover patterns, and gain insights from your data.
Features
Supported Visualization Types
- Bar Charts: Compare categories and values
- Line Charts: Show trends over time
- Scatter Plots: Explore relationships between variables
- Heatmaps: Visualize correlation matrices
- Histograms: Understand data distributions
- Box Plots: Analyze statistical summaries
Interactive Capabilities
- Zoom & Pan: Explore data at different scales
- Hover Details: See precise values on mouseover
- Filtering: Focus on specific data subsets
- Color Coding: Encode additional dimensions
- Axis Customization: Adjust scales and ranges
- Export Options: Save as PNG, SVG, or PDF
How It Works
The playground automatically analyzes your CSV structure and suggests appropriate visualizations:
Data Processing Pipeline
interface DataAnalysis {
columns: ColumnInfo[]
rowCount: number
dataTypes: Record<string, 'numeric' | 'categorical' | 'temporal'>
suggestedCharts: ChartType[]
correlations: CorrelationMatrix
}
function analyzeData(csvData: string): DataAnalysis {
const parsed = parseCSV(csvData)
const columns = detectColumnTypes(parsed)
const suggestions = suggestVisualizations(columns)
return {
columns,
rowCount: parsed.length,
dataTypes: inferDataTypes(columns),
suggestedCharts: suggestions,
correlations: calculateCorrelations(parsed)
}
}
Smart Chart Recommendations
The system analyzes your data structure and recommends the most appropriate visualizations:
- Single numeric column → Histogram
- Categorical + numeric → Bar chart
- Two numeric columns → Scatter plot
- Time series data → Line chart
- Multiple numeric columns → Correlation heatmap
Advanced Features
Statistical Analysis
Automatic calculation of key statistics:
- Mean, median, mode
- Standard deviation and variance
- Quartiles and outliers
- Correlation coefficients
- Trend analysis
Interactive Filtering
interface FilterState {
numericRanges: Record<string, [number, number]>
categoricalSelections: Record<string, string[]>
dateRanges: Record<string, [Date, Date]>
}
function applyFilters(data: DataPoint[], filters: FilterState): DataPoint[] {
return data.filter(point => {
// Apply numeric range filters
for (const [column, range] of Object.entries(filters.numericRanges)) {
if (point[column] < range[0] || point[column] > range[1]) {
return false
}
}
// Apply categorical filters
for (const [column, selections] of Object.entries(filters.categoricalSelections)) {
if (!selections.includes(point[column])) {
return false
}
}
return true
})
}
Sample Datasets
Try the playground with these example datasets:
Sales Performance Data
- Monthly sales figures across different regions
- Product categories and performance metrics
- Time series analysis and trend identification
Weather Station Data
- Temperature, humidity, and precipitation readings
- Multi-variate analysis and correlation discovery
- Seasonal pattern visualization
Stock Market Data
- Historical price movements and trading volumes
- Technical indicator calculations
- Comparative analysis across different stocks
Technical Implementation
Built with modern web technologies for smooth performance:
D3.js Integration
class ScatterPlot {
private svg: d3.Selection<SVGSVGElement, unknown, null, undefined>
private data: DataPoint[]
constructor(container: HTMLElement, data: DataPoint[]) {
this.data = data
this.svg = d3.select(container)
.append('svg')
.attr('width', 800)
.attr('height', 600)
this.render()
}
render() {
const xScale = d3.scaleLinear()
.domain(d3.extent(this.data, d => d.x))
.range([50, 750])
const yScale = d3.scaleLinear()
.domain(d3.extent(this.data, d => d.y))
.range([550, 50])
this.svg.selectAll('circle')
.data(this.data)
.enter()
.append('circle')
.attr('cx', d => xScale(d.x))
.attr('cy', d => yScale(d.y))
.attr('r', 5)
.on('mouseover', this.showTooltip)
.on('mouseout', this.hideTooltip)
}
}
Performance Optimization
- Virtual scrolling for large datasets
- Canvas rendering for high-density scatter plots
- Web Workers for intensive calculations
- Streaming CSV parsing for large files
- Efficient data structures for real-time filtering
Use Cases
Business Analytics
- Sales performance analysis
- Customer behavior patterns
- Marketing campaign effectiveness
- Financial trend analysis
Scientific Research
- Experimental data exploration
- Statistical hypothesis testing
- Pattern recognition in datasets
- Publication-ready visualizations
Educational Applications
- Teaching data science concepts
- Statistical analysis exercises
- Interactive data exploration
- Hypothesis generation and testing
Getting Started
- Drop your CSV file onto the upload area
- Review the data preview and column types
- Select a visualization type from the recommendations
- Customize the chart using the control panel
- Interact with your data using zoom, filter, and selection tools
- Export your visualization in your preferred format
The playground handles most CSV formats automatically, including:
- Different delimiter types (comma, semicolon, tab)
- Various date formats
- Missing value handling
- Automatic type inference
- Large file processing (up to 100MB)
Perfect for data analysts, researchers, students, and anyone who wants to quickly explore and visualize their data without complex software setup.